L’intelligence artificielle (IA) a envahi presque toutes les situations de la vie moderne. Elle vous recommande le meilleur trajet, vous propose de la musique ou des podcasts pendant le trajet, alimente d’innombrables applications et machines tout au long de la journée et vous recommande des émissions ou des films à regarder en streaming lorsque vous rentrez chez vous.
L’IA est là pour rester
L’IA industrielle peut aider les fabricants à maximiser le temps de fonctionnement grâce à la surveillance des équipements et aux programmes de maintenance préventive. Elle peut également servir à identifier les pertes de rendement et les défauts.
Cependant, l’IA a du mal à être massivement adoptée dans le domaine de l’automatisation industrielle. De nombreuses entreprises sont encore dépassées par les principes de base et hésitent à s’appuyer sur l’IA pour obtenir des résultats significatifs.
Dans le rapport d’IBM sur l’indice d’adoption de l’IA dans le monde en 2022, 34 % des personnes interrogées (environ 2 550 entreprises du monde entier) ont déclaré que le manque d’expertise en matière d’IA empêchait sa mise en œuvre. Parmi les autres facteurs empêchant l’adoption de l’IA figurent le coût (29 %), le manque d’outils/de plateformes (25 %), la difficulté et l’évolutivité (24 %) et la complexité des données (24 %).
Nous allons examiner ici ces obstacles et dissiper les idées fausses courantes sur l’IA dans la production et la logistique.
1) Les termes sont interchangeables et sans importance.
Avant d’explorer les options de l’IA, il est essentiel de comprendre les différentes formes, fonctions et faisabilités de cette technologie. Bien que certains termes puissent se chevaucher ou sembler synonymes à première vue, comprendre les nuances de l’IA est la première étape pour déterminer si cette technologie est adaptée à vos besoins.
Algorithme : ensemble d’instructions et de calculs qui aident un ordinateur à atteindre un objectif. Un algorithme « d’apprentissage » utilise des méthodologies d’essai-erreur et d’apprentissage par exemple pour optimiser les processus de production sans intervention humaine.
Intelligence artificielle : ensemble de techniques informatiques qui tentent d’imiter la prise de décision humaine, en utilisant l’automatisation pour effectuer des tâches difficiles pour l’homme grâce à la reconnaissance d’images, au traitement du langage naturel et à d’autres technologies.
Deep learning : une technologie d’IA conçue pour automatiser des applications complexes et hautement personnalisées. Le traitement s’effectue via une unité de traitement graphique (GPU), ce qui permet d’analyser rapidement et efficacement de vastes séries d’images afin de détecter des défauts subtils et de différencier les anomalies acceptables et inacceptables.
Edge Learning : une technologie d’IA conçue pour être facile à utiliser. Le traitement a lieu sur l’appareil, ou « à la périphérie », à l’aide d’un ensemble d’algorithmes pré-entraînés. La technologie est simple à mettre en place et nécessite des jeux d’images plus petits (5 à 10 images seulement) et des périodes d’apprentissage plus courtes que les solutions traditionnelles basées sur le Deep learning.
Machine learning : Processus informatiques qui peuvent améliorer les résultats sans programmation humaine. Les algorithmes d’apprentissage automatique entraînent un ordinateur à rechercher le succès et à éviter l’échec des millions de fois pour générer des résultats d’apprentissage.
Machine vision : Algorithmes basés sur des règles qui identifient les caractéristiques spécifiques d’un objet. Bien que les outils de vision artificielle fonctionnent beaucoup plus rapidement que l’œil humain, l’IA peut améliorer considérablement la précision et l’efficacité de ces outils.
2) L’IA va remplacer les emplois et susciter la méfiance des employés
Le mythe de la technologie émergente qui remplace les emplois pourrait probablement remonter à l’invention de la roue. La vérité est un peu plus compliquée.
Les progrès de la technologie industrielle, y compris l’IA, sont conçus pour améliorer les performances, l’efficacité, la qualité et les capacités. Il est facile de comprendre pourquoi les moteurs à combustion interne et à vapeur ont efficacement remplacé les chevaux, ou comment le télégraphe a ouvert de nouvelles lignes de communication par rapport à la distribution manuelle des lettres. Ces innovations ont succédé à d’autres formes de technologie. Bien que les moteurs aient évincé le cheval, la technologie a créé une toute nouvelle industrie tout en permettant le transport de masse, en transformant la logistique, le transport personnel et l’expédition.
On peut dire la même chose de l’IA. Au lieu que l’IA remplace les emplois, les entreprises découvrent que les employés peuvent travailler aux côtés de l’IA pour atteindre une plus grande productivité et ouvrir de nouvelles possibilités.
L’IA peut réduire la quantité de tâches banales et répétitives, ce qui permet aux travailleurs d’aborder d’autres fonctions créatives ou hautement qualifiées. En 2018, une organisation caritative basée à New York a commencé à mettre en œuvre l’IA pour les tâches de saisie de données, ce qui a contribué à faire baisser le taux de turnover annuel de l’entreprise de 42 % à 17 %.
Cette technologie peut désormais être largement utilisée dans les domaines de la production et de la logistique pour faire face à la pénurie actuelle de main-d’œuvre et à d’autres problèmes chroniques. Associée à la robotique, l’IA peut faciliter des tâches telles que la détection d’objets et la cartographie des plans pour livrer des marchandises dans des bâtiments. Associée à des systèmes de vision artificielle, l’IA peut effectuer des tâches d’assurance qualité répétitives, mais essentielles, notamment la détection et l’inspection de l’absence ou de la présence de pièces.
L’utilisation de l’IA pour effectuer des opérations ordinaires permet aux établissements de réaffecter des ressources à des tâches plus exigeantes et d’aider les opérateurs en diminuant leur charge de travail.
3) L’IA industrielle nécessite des milliers d’images et de grands ensembles de données.
La réalité de cette fausse idée peut être résumée par l’un des propos favoris des ingénieurs : « ça dépend ».
L’IA est un vaste domaine, qui englobe de nombreux types de technologies pouvant être appliquées d’une grande variété de manières. Pour que l’IA puisse s’attaquer à des applications complexes, telles que la détection d’anomalies sur les soudures ou l’analyse des motifs de couture dans les textiles, la technologie doit faire l’objet d’une modélisation, d’un développement et de tests approfondis, ce qui fait des solutions basées sur le Deep learning un candidat idéal.
Toutefois, des méthodes d’IA plus simples peuvent permettre d’accomplir des tâches similaires, notamment la détection des défauts et la classification/tri. La technologie d’apprentissage par Edge learning, par exemple, n’a besoin que de 5 à 10 images pour s’entraîner et peut être déployée par des techniciens, sans aucune expérience.
Tout d’abord, un opérateur forme le système en fonction de l’application. Par exemple, dans un scénario d’inspection de pièces, l’utilisateur présente au système des images d’une pièce acceptable et de pièces présentant des défauts.
À partir d’une poignée d’images seulement, la technologie d’apprentissage par Edge learning exploite des algorithmes avancés pour différencier les pièces acceptables des pièces inacceptables. Une fois que le système est entraîné à distinguer les bonnes pièces des mauvaises, les utilisateurs peuvent déployer la solution sur la chaîne de fabrication.
4) Il faut un doctorat et une équipe de data scientists pour mettre en œuvre des solutions d’IA.
Développer, concevoir et tester l’IA nécessite un ensemble de compétences raffinées, mais l’utilisation de solutions d’IA modernes peut être déployée par des techniciens en quelques minutes.
Par exemple, Les solutions d’Edge learning de Cognex s’exécutent entièrement dans une caméra intelligente équipée d’un éclairage intégré, d’un objectif autofocus et d’un capteur puissant, qui fonctionnent tous ensemble pour offrir des capacités d’inspection précises.
Conclusion
L’IA n’est pas une mode ou une technologie spécialisée applicable à des marchés spécifiques ; c’est un vaste domaine qui peut aider le secteur industriel de nombreuses façons. À mesure que la technologie évolue, elle devient plus conviviale. Elle a été testée sur le terrain dans les secteurs de la fabrication et de la logistique, ce qui a permis de simplifier le contrôle de la qualité, d’améliorer la traçabilité des produits et d’identifier les défauts plus tôt dans le processus de production.
Article original disponible sur https://www.cognex.com/